a fixed point approach to the hyers-ulam stability of an $aq$ functional equation in probabilistic modular spaces

نویسندگان

s. zolfaghari

a. ebadian

s. ostadbashi

m. de la sen

m. eshaghi gordji

چکیده

in this paper, we prove the hyers-ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach

‎In this paper‎, ‎we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method‎.

متن کامل

Hyers-Ulam-Rassias stability of a composite functional equation in various normed spaces

In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.

متن کامل

direct and fixed point methods approach to the generalized hyers–ulam stability for a functional equation having monomials as solutions

the main goal of this paper is the study of the generalized hyers-ulam stability of the following functionalequation f (2x  y)  f (2x  y)  (n 1)(n  2)(n  3) f ( y)  2n2 f (x  y)  f (x  y)  6 f (x) where n  1,2,3,4 , in non–archimedean spaces, by using direct and fixed point methods.

متن کامل

Hyers-Ulam-Rassias Stability of Orthogonal Quadratic Functional Equation in Modular Spaces

In this paper, we study the Hyers-Ulam-Rassias stability of the quadratic functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y), x⊥y in which ⊥ is orthogonality in the sens of Rätz in modular spaces.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

ناشر: semnan university

ISSN

دوره 4

شماره 2 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023